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This note presents and discusses Isaac Levi’s account of the relationship between deliberation 
and prediction in decision theory. The latter is an essential part of Levi’s more general theory 
of rationality. Levi’s views potentially have tremendous implications for economists especially 
regarding the current use of game theory. These views are more particularly developed in 
several essays collected in his book The Covenant of Reason [1], especially “Rationality, 
prediction and autonomous choice”, “Consequentialism and sequential choice” and 
“Prediction, deliberation and correlated equilibrium”. The first section presents and discusses 
Levi’s main thesis that “deliberation crowds out prediction”. The next two sections will discuss 
some implications of this thesis for decision theory and game theory, specifically the 
equivalence between games in dynamic form and in normal form and the relevance of the 
correlated equilibrium concept for Bayesianism in the context of strategic interactions. 

 

1. Deliberation Crowds Out Prediction 

The determination of principles of rational choice is the main subject of decision theory since 
its early development at the beginning of the 20th century. Since its beginnings, decision theory 
has pursued two different and somehow conflicting goals: on the one hand, to describe and 
explain how people actually make choices and, on the other hand, to determine how people 
should make choices and what choices they should make. While the former goal corresponds 
to what can be called “positive decision theory”, the latter is constitutive of “normative 
decision theory”. Most decision theorists, especially the proponents of “Bayesian” decision 
theory, have agreed that decision theory cannot but be partially normative. Indeed, while 
today Bayesian decision theory is generally not regarded as an accurate account of how 
individuals are actually making choices, most decision theorists remain convinced that it is 
still relevant as a normative theory of rational decision-making. This is in this context that Isaac 
Levi’s claim that “deliberation crowds out prediction” should be discussed. 

In this section, I will confine the discussion to the restrictive framework of Bayesian decision 
theory though Levi’s account more generally applies to any form of decision theory that 
adheres to consequentialism. Consequentialism will be more fully discussed in the second post 
of this series. Consider any decision problem D in which an agent DM has to make a choice 
over a set of options whose consequences are not necessarily fully known for sure. Bayesians 
will generally model D as a triple < A, S, C > where A is the set of acts a, S the set of states of 
nature s and C the set of consequences c. In the most general form of Bayesian decision theory, 
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any a, s and c may be regarded as a proposition to which truth-values might be assigned. In 
Savage’s specific version of Bayesian decision theory, acts are conceived as functions from 
states to consequences, i.e. a: S  C or c = a(s). In this framework, it is useful to see acts as DM’s 
objects of choice, i.e. the elements over which he has a direct control, while states may be 
interpreted as every features in D over which DM has no direct control. Consequences are 
simply the result of the combination of an act (chosen by DM) and a state (not chosen by DM). 
Still following Savage, it is standard to assume that DM has (subjective) beliefs over which 
state s actually holds. These beliefs are captured by a probability function p(.) with ∑sp(s) = 1 
for a finite state space. Moreover, each consequence c is assigned a utility value u representing 
DM’s preferences over the consequences. A Bayesian DM will then choose the act that 
maximizes his expected utility given his subjective beliefs and his preferences, i.e. 

Maxa Eu(a) = ∑sp(s|a)u(a(s)) =  ∑sp(s|a)u(c). 

Two things are worth noting. First, note that the probabilities that enter into the expected 
utility computation are conditional probabilities of states given acts. We should indeed account 
for the possibility that the probabilities of states depend on the act performed. The nature of 
the relationship between states and acts represented by these conditional probabilities is the 
main subject of conflict between causal and evidential decision theorists. Second, as it is well-
known, in Savage’s version of Bayesian decision theory, we start with a full ordering 
representing DM’s preferences over acts and given a set of axioms, it is shown that we can 
derive a unique probability function p(.) and a cardinal utility function u(.) unique up to any 
positive affine transformation. It is indeed important to recognize that Savage’s account is 
essentially behaviorist because it merely shows that given the fact that DM’s preferences and 
beliefs satisfy some properties, then his choice can be represented as the maximization of some 
function with some uniqueness property. Not all Bayesian decision theorists necessarily share 
Savage’s behaviorist commitment. 

I have just stated that in Savage’s account, DM ascribes probabilities to states, utilities to 
consequences and hence expected utilities to acts. However, if acts, states and consequences 
are all understood as propositions (as argued by Richard Jeffrey and Levi among others), then 
there is nothing in principle prohibiting to ascribe utilities to states and probabilities to both 
consequences and acts. This is this last possibility (ascribing probabilities to acts) that is the 
focus of Levi’s claim that deliberation crowds out prediction. In particular, does it make sense 
for DM to have unconditional probabilities over the set A? How having such probabilities could 
be interpreted from the perspective of DM’s deliberation in D? If we take a third person 
perspective, ascribing probabilities to DM’s objects of choice seems not particularly 
contentious. It makes perfect sense for me to say for instance “I believe that you will start again 
to smoke before the end of the month with probability p”. Ascribing probabilities to others’ 
choices is an essential part of our daily activity consisting in predicting others’ choices. 
Moreover, probability ascription may be a way to explain and rationalize others’ behavior. The 
point of course is that these are my probabilities, not yours. The issue here is whether a 
deliberating agent has to, or even can ascribe such probabilities to his own actions, 
acknowledging that such probabilities are in any case not relevant in the expected utility 
computation. 
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Levi has been (with Wolfgang Spohn) the most forceful opponent to such a possibility. He 
basically claims that the principles of rationality that underlie any theory of decision-making 
(including Bayesian ones) cannot at the same time serve as explanatory and predictive tools 
and as normative principles guiding rational behavior. In other words, as far as the 
deliberating agent is using rationality principles to make the best choice, he cannot at the same 
time use these principles to predict his own behavior at the very moment he is making his choice.1 
This is the essence of the “deliberation crowds out prediction” slogan. To understand Levi’s 
position, it is necessary to delve into some technical details underlying the general argument. 
Wlodek Rabinowicz [2] makes a great job in reconstructing this argument (see also[3]). A 
crucial premise is that, following De Finetti, Levi considers belief ascription as fully constituted 
by the elicitation of betting rates, i.e. DM’s belief over some event E is determined and 
corresponds to what DM would consider as the fair price of a gamble where event E pays x$ 
and event non-E pays y$.2 Consider this example: I propose you to pay y$ (the cost or the price 
of the bet) to participate to the following bet: if Spain win the Olympic gold medal of basketball 
at Rio this month, I will pay you x$, otherwise I pay you nothing. Therefore, x is the net gain 
of the bet and x+y is called the stake of the bet. Now, the fair price y*$ of the bet corresponds to 
the amount for which you are indifferent between taking and not taking the bet. Suppose that 
x = 100 and that y* = 5. Your betting rate for this gamble is then y*/(x+y*) = 5/105 = 0,048, i.e. 
you believe that Spain will win with probability less than 0,05. This is the traditional way 
beliefs are determined in Bayesian decision theory. Now, Levi’s argument is that such a 
procedure cannot be applied in the case of beliefs over acts on pain of inconsistency. The 
argument relies on two claims: 

(1) If DM is certain that he will not perform some action a, then a is not regarded as part of 
the feasible acts by DM. 

(2) If DM assigns probabilities to acts, then he must assign probability 0 to acts he regards 
as inadmissible, i.e. which do not maximize expected utility. 

Clearly, (1) and (2) entail together that only feasible acts (figuring in the set A) are admissible 
(maximize expected utility), in which case deliberation is unnecessary for DM. If it is the case 
however, that means that principles of rationality cannot be used as normative principles in 
the deliberation process. While claim (1) is relatively transparent (even if it is disputable), claim 
(2) is less straightforward. Consider therefore the following illustration. 

DM has a choice between two feasible acts a and b with Eu(a) > Eu(b), i.e. only a is admissible. 
Suppose that DM assigns probabilities p(a) and p(b) according to the procedure presented 
above. We present DM with a fair bet B on a where the price is y* and the stake is x+y*. As the 

                                                             
1 Note that this has far reaching implications for moral philosophy and ethics as moral decision problems 
are a strict subset of decision problems. All moral decision problems can be represented along a weakly 
consequentialist frame. 
2 A gamble’s fair price is the price at which DM is indifferent accepting to buy the bet and accepting to 
sell the bet.   
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bet is fair, y* is the fair price and y*/(x+y*) = p(a) is the betting rate measuring DM’s belief. Now, 
DM has four feasible options: 

Take the bet and choose a (B&a) 

Do not take the bet and choose a (notB&a)  

Take the bet and choose b (B&b) 

Do not take the bet and choose b (notB&b) 

As taking the bet and choosing a guarantee a sure gain of x to DM, it is easy to see that B&a 
strictly dominates notB&a. Similarly, as taking the bet and choosing b guarantee a sure loss of 
y*, notB&b strictly dominates B&b. The choice is therefore between B&a and notB&b and 
clearly Eu(a) + x > Eu(b). It follows that the fair price for B is y* = x + y* (i.e. x = 0 for any y*) and 
hence p(a) = 1 and p(b) = 1 – p(a) = 0. The inadmissible option b has probability 0 and is thus 
regarded as unfeasible by DM (claim 1). No deliberation is needed for DM if he predicts his 
choice since only a is regarded as feasible. 

Levi’s argument is by no means undisputable and the papers of Rabinowicz and Joyce referred 
above make a great job at showing its weaknesses. In the next two sections, I will however 
take it as granted and discuss some of its implications for decision theory and game theory. 

 

2. Consequentialism and Sequential-Form Decision Problems      

In his article “Consequentialism and sequential choice”, Isaac Levi builds on his “deliberation 
crowds prediction” thesis to discuss Peter Hammond’s account of consequentialism in 
decision theory presented in the paper “Consequentialist Foundations for Expected Utility” 
[4]. Hammonds contends that consequentialism (to be defined below) implies several 
properties for decision problems, especially (i) the formal equivalence between decision 
problems in sequential (or extensive) form and strategic (or normal) form and (ii) ordinality of 
preferences over options (i.e. acts and consequences). Though Levi and Hammonds are 
essentially concerned with one-person decision problems, the discussion is also relevant from 
a game-theoretic perspective as both properties are generally assumed in the latter. This 
section will focus on point (i). 

First, what is consequentialism? Levi distinguishes between three forms: weak 
consequentialism (WC), strong consequentialism (SC) and Hammond’s consequentialism 
(HC). According to Levi, while only HC entails point (i), both SC and HC entail point (ii). Levi 
contends however that none of them is defensible once we take into account the “deliberation 
crowds out prediction” thesis. We may define these various forms of consequentialism on the 
basis of the notation introduced in the preceding post. Recall that any decision problem D 
corresponds then to a triple < A, S, C > with A the set of acts (defined as functions from states 
to consequences), S the set of states of nature and C the set of consequences. A probability 
distribution over S is defined by the function p(.) and represents the decision-maker DM’s 
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subjective beliefs while a cardinal utility function u(.) defined over C represents DM’s 
preferences. Now the definitions of WC and SC are the following: 

Weakly consequentialist representation - A representation of D is weakly consequentialist if, for each 
a ߳ A, an unconditional utility value u(c) is ascribed to any element c of the subset Ca ⊆ C and 
where we allow for a ߳  Ca. If a is not the sole element of Ca, then the representation is nontrivially 
weakly consequentialist. 

(WC) Any decision problem D has a weakly consequentialist representation. 

Strongly consequentialist representation - A representation of D is strongly consequentialist if, (i) it 
is nontrivially weakly consequentialist and (ii) given the set of consequence-propositions C, if 
ca and cb are two identical propositions, then the conjuncts a ∧ ca and b ∧ cb are such that u(a ∧ 
ca) = u(b ∧ cb). 

 (SC) Any decision problem D has a strongly consequentialist representation. 

WC thus holds that it is always possible to represent a decision problem as a set of acts to 
which we can ascribe unconditional utility value to all consequences each act leads to, and 
where an act itself can be analyzed as a consequence. As Levi notes, WC formulated this way 
is undisputable.3 SC has been endorsed by Savage and most contemporary decision theorists. 
The difference with WC lies in the fact that SC holds a strict separation between acts and 
consequences. Specifically, the utility value of any consequence c is independent of the act a 
that brought it. SC thus seems to exclude various forms of “procedural” account of decision 
problems. Actually, I am not sure that the contrast between WC and SC is as important as Levi 
suggests for all is required for SC is to have a sufficiently rich set of consequences C to 
guarantee the required independence.  

According to Levi, HC is stronger than SC. This is due to the fact that while SC does not entail 
that sequential form and strategic form decision problems are equivalent, HC makes this 
equivalence its constitutive characteristic. To see this, we have to refine our definition of a 
decision problem to account for the specificity of the sequential form. A sequential decision 
problem SD is constituted by a set N of nodes n with a subset N(D) of decision nodes (where 
DM makes choice), a subset N(C) of chance nodes (representing uncertainty) and a subset N(T) 
of terminal nodes. All elements of N(T) are consequence-propositions and therefore we may 
simply assume that N(T) = C. N(D) is itself partitioned into information sets I where two nodes 
n and n’ in the same I are indistinguishable for DM. For each n ∈ N(D) DM has subjective 
beliefs measured by the probability function p(.|I) that indicates DM’s belief of being at node 
n given that he knows I. The conditional probabilities p(.|I) are of course generated on the basis 
of the unconditional probabilities p(.) that DM holds at each node n ∈ N(C). The triple < N(D), 
N(C), N(T) > defines a tree T. Following Levi, I will however simplify the discussion by 
assuming perfect information and thus N(C) = ∅. Now, we define a behavior norm B(T, n) for 

                                                             
3 Note that this has far reaching implications for moral philosophy and ethics as moral decision problems 
are a strict subset of decision problems. All moral decision problems can be represented along a weakly 
consequentialist frame. 
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any tree T and any decision node n in T the set of admissible options (choices) from the set of 
available options at that node. Denote T(n) the subtree starting from any decision node n. A 
strategy (or act) specifies at least one admissible option for all decision nodes reachable, i.e. 
B(T(n), n) must be non-empty for each n ∈ N(D). Given that N(T) = C, we write C(T(n)) the 
subset of consequences (terminal nodes) that are reachable in the subtree T(n) and B[C(T(n)), 
n] the set of consequences DM would regard as admissible if all elements in C(T(n)) were 
directly available at decision node n. Therefore, B[C(T(n)), n] is the set of admissible 
consequences in the strategic form equivalent of SD as defined by (sub)tree T(n). Finally, write 
φ(T(n)) the set of admissible consequences in the sequential form decision problem SD. HC is 
then defined as follows:  

(HC) φ(T(n)) = B[C(T(n)), n] 

In words, HC states the kind of representation (sequential or strategic) of a decision problem 
SD used is irrelevant in the determination of the set of admissible consequences. Moreover, 
since we have assumed perfect information, its straightforward that this is also true for 
admissible acts which, in sequential form decision problems, correspond to exhaustive plans 
of actions. 

Levi argues that assuming this equivalence is too strong and cannot be an implication of 
consequentialism. This objection is of course grounded on the “deliberation crowds out 
prediction” thesis. Consider a DM faced with a decision problem SD with two decision nodes. 
At node 1, DM has the choice between consuming drug (a1) or abstaining (b1). If he abstains, 
the decision problem ends but if the adduces, he then has the choice at node 2 between 
continuing taking drugs and becoming addict (a2) or stopping and avoiding addiction (c2). 
Suppose that DM’s preferences are such that u(c2) > u(b1) > u(a2). DM’s available acts (or 
strategies) are therefore (a1, a2), (a1, c2), (b1, a2) and (b1, c2).4 Consider the strategic form 
representation of this decision problem where DM has to make a choice once for all regarding 
the whole decision path. Arguably, the only admissible consequence is c2 and therefore the 
only admissible act is (a1, c2). Assume however that if DM were to choose a1, he would fall 
prey to temptation at node 2 and would not be able to refrain from continuing consuming 
drugs. In other words, at node 2, only option a2 would actually be available. Suppose that DM 
knows this at node 1.5 Now, a sophisticated DM will anticipate is inability to resist temptation 
and will choose to abstain (b1) at node 1. It follows that a sophisticated DM will choose (b1, 
a2) in the extensive form of SD, thus violating HC (but not SC). 

What is implicit behind Levi’s claim is that, while it makes perfect sense for DM to ascribe 
probability (including probability 1 or 0) to his future choices at subsequent decision nodes, 

                                                             
4 Acts (b1, a2) and (b1, c2) are of course equivalent in terms of consequences as DM will never actually 
have to make a choice at node 2. Still, in some cases it is essential to determine what DM would do in 
counterfactual scenarios to evaluate his rationality. 
5 Alternatively, we may suppose that DM has at node 1 a probabilistic belief over his ability to resist 
temptation at node 2. This can be simply implemented by adding a chance node before node 1 that 
determines the utility value of the augmented set of consequences and/or the available options at node 
2 and by assuming that DM ignores the result of the chance move. 
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this cannot be the case for his choice over acts, i.e. exhaustive plans of actions in the decision 
path. For if it was the case, then as (a1, c2) is the only admissible act, he would have to ascribe 
probability 0 to all acts but (a1, c2) (recall Levi’s claim 2 in the previous section). But then, that 
would also imply that only (a1, c2) is feasible (Levi’s claim 1) while this is actually not the case.6 
Levi’s point is thus that, at node 1, the choices at node 1 and at node 2 are qualitatively different: 
at node 1, DM has to deliberate over the implications of choosing the various options at his 
disposal given his beliefs over what he would do at node 2. In other words, DM’s choice at node 1 
requires him to deliberate on the basis of a prediction about his future behavior. In turn, at 
node 2, DM’s choice will involve a similar kind of deliberation. The reduction of extensive 
form into strategic form is only possible if one conflates these two choices and thus ignores the 
asymmetry between deliberation and prediction. 

Levi’s argument is also relevant from a game-theoretic perspective as the current standard 
view is that a formal equivalence between strategic form and extensive form games holds. This 
issue is particularly significant for the study of the rationality and epistemic conditions 
sustaining various solution concepts. A standard assumption in game theory is that the players 
have knowledge (or full belief) of their strategy choices. The evaluation of the rationality of 
their choices both in strategic and extensive form games however requires to determine what 
the players believe (or would have believed) in counterfactual situations arising from different 
strategy choices. For instance, it is now well established that common belief in rationality does 
not entail the backward induction solution in perfect information games or rationalizability in 
strategic form games. Dealing with these issues necessitates a heavy conceptual apparatus. 
However, has recently argued by economist Giacomo Bonanno [5], not viewing one’s strategy 
choices as objects of belief or knowledge allows an easier study of extensive-form games that 
avoids dealing with counterfactuals. Beyond the technical considerations, if one subscribes to 
the “deliberation crowds out prediction”, this is an alternative path worth exploring.   

I think that Levi’s example is not fully convincing however. Arguably, one may argue that 
since action c2 is assumed to be unavailable at node 2, acts (a1, c2) and (b1, c2) should also be 
regarded as unavailable. The resulting reduced version of the strategic form decision problem 
would then lead to the same result than the sequential form. This is not different even if we 
assume that DM is uncertain regarding his ability to resist temptation (see the preceding note). 
Indeed, the resulting expected utilities of acts would trivially lead to the same result in the 
strategic and in the sequential forms.  Contrary to what Levi argues, it is not clear that that 
would violate HC. 

 

                                                             
6 I think that Levi’s example is not fully convincing however. Arguably, one may argue that since action 
c2 is assumed to be unavailable at node 2, acts (a1, c2) and (b1, c2) should also be regarded as unavailable. 
The resulting reduced version of the strategic form decision problem would then lead to the same result 
than the sequential form. This is not different even if we assume that DM is uncertain regarding his 
ability to resist temptation (see the preceding note). Indeed, the resulting expected utilities of acts would 
trivially lead to the same result in the strategic and in the sequential forms.  Contrary to what Levi 
argues, it is not clear that that would violate HC. 
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3. Bayesianism, Correlated Equilibrium and the Epistemic Program 

In his important article “Correlated equilibrium as an Expression of Bayesian Rationality” [6], 
Robert Aumann argues that Bayesian rationality in strategic interactions makes correlated 
equilibrium the natural solution concept for game theory. Aumann’s claim is a direct and 
explicit answer to a short paper by Kadane and Larkey [7] which argues that the extension of 
Bayesian decision theory to strategic interactions leads to a fundamental indetermination at 
the theoretical level regarding how Bayesian rational players will/should play. To these 
authors, the way a game will be played depends on contextual and empirical features on which 
the theorist has few things to say. Aumann’s aim is clearly to show that the game theorist 
endorsing Bayesianism is not committed to such nihilism. Aumann’s paper was one of the first 
contributions to what is nowadays sometimes called the “epistemic program” in game theory. 
The epistemic program can be characterized as an attempt to characterize various solution 
concepts for normal- and extensive-form games (Nash equilibrium, correlated equilibrium, 
rationalizability, subgame perfection, …) in terms of sufficient epistemic conditions regarding 
the players’ rationality and their beliefs and knowledge over others’ choices, rationality and 
beliefs. While classical game theory in the tradition inspired by Nash has followed a “top-
down” approach consisting in determining which strategy profiles in a game correspond to a 
given solution concept, the epistemic approach rather follows a “bottom-up” perspective and 
asks what are the conditions for a given solution concept to be implemented by the players. 
While Levi’s essay “Prediction, deliberation and correlated equilibrium” focuses on Aumann’s 
defense of the correlated equilibrium solution concept, its main points are essentially relevant 
for the epistemic program as a whole, as I will try to show below. 

Before delving into the details of Levi’s argument, it might be useful to first provide a semi-
formal definition of the correlated equilibrium solution concept. Denote A = (A1, …, An) the 
joint action-space corresponding to the Cartesian product of the set of pure strategies of the n 
players in a game. Assume that each player i = 1, …, n has a cardinal utility function ui(.) 
representing his preferences over the set of outcomes (i.e. strategy profiles) determined by A. 
Finally, denote Γ some probability space. A function f: Γ  A defines a correlated equilibrium 
if for any signal γ, f(γ) = a is a strategy profile such that each player maximizes his expected 
utility conditional on the strategy he is playing: 

For all i and all strategy ai’ ≠ ai, Eui(ai|ai) ≥ Eui(ai’|ai) 

Correspondingly, the numbers Prob{f-1(a)} define the correlated distribution over A that is 
implemented in the correlated equilibrium. The set of correlated equilibria in any given game 
is always at least as large than the set of Nash equilibria. Indeed, a Nash equilibrium is also a 
correlated equilibrium while correlated equilibria correspond to the convex hull of Nash 
equilibria. As an illustration, consider for instance the famous hawk-dove game: 
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 Column 
C D 

Row C 5 ; 5 3 ; 7 
D 7 ; 3 2 ; 2 

  

This game has two Nash equilibria in pure strategy (i.e. [D, C] and [C, D]) and one Nash 
equilibrium in mixed strategy where each player plays C with probability 1/3. There are many 
more correlated equilibria in this game however. One of them is trivially given for instance by 
the following correlated distribution:  

 

 Column 
C D 

Row C 0 1/2 
D 1/2 0 

 

In his paper, Aumann establishes the following important theorem:  

Aumann’s theorem – For any game, if 

(i) Each player i has a probability measure pi(.) over the joint-action space A; 

(ii) The probability measure is unique, i.e. p1(.) = … = pn(.); 

(iii) The players are Bayesian rational (i.e. maximizes expected utility) and this is common 
 knowledge; 

then, the players implement a correlated equilibrium corresponding to a function f with the 
correlated distribution defined by Prob{f-1(a)} = p(a). 

The theorem thus shows that Bayesian rational players endowed with common knowledge of 
their rationality and a common prior belief over the joint-action space must implement a 
correlated equilibrium. Therefore, it seems that Kadane and Larkey were indeed too 
pessimistic in claiming that nothing can be said regarding what will happen in a game with 
Bayesian decision makers. 

Levi attacks Aumann’s conclusion by rejecting all of its premises. Once again, this rejection is 
grounded on the “deliberation crowds out prediction” thesis. Actually, Levi’s makes two 
distinct and relatively independent critics against Aumann’s assumptions. The first concerns 
an assumption that I have left implicit while the second targets premises (i)-(iii) together. I will 
consider them in turn. 

Implicit in Aumann’s theorem is an assumption that Levi calls “ratifiability”. To understand 
what that means, it is useful to recall that a Bayesian decision-maker maximizes expected 
utility using conditional probabilities over states given acts. In other words, a Bayesian decision 
maker has to account for the possibility that his choice may reveal and/or influence the 
likelihood that a given state is the actual state. Evidential decision theorists like Richard Jeffrey 
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claim in particular that it is right to see one’s choice as an evidence for the truth-value of 
various state-propositions even in cases where no obvious causal relationship seems to hold 
between one’s choice and states of nature. This point is particularly significant in a game-
theoretic context where while the players make choice independently (in a normal-form 
game), some kind of correlation over choices and beliefs may be seen as plausible. The most 
extreme case is provided by the prisoner’s dilemma which Levi discusses at length in his essay:  

 

 Column 
C D 

Row C 5 ; 5 1 ; 6 
D 6 ; 1 2 ; 2 

 

The prisoner’s dilemma has a unique Nash equilibrium: [D, D]. Clearly, given the definition 
given above, this strategy profile is also the sole correlated equilibrium. However, from a 
Bayesian perspective, Levi argues that it is perfectly fine for Row to reason along the following 
lines: 

“Given what I know and believe about the situation and the other player, I believe 
almost for sure that if I play D, Column will also play D. However, I also believe that 
if I play C, there is a significant chance that Column will play C”. 

Suppose that Row’s conditional probabilities are p(Column plays D|I play D) = 1 and 
p(Column plays C|I play C) = ½. Then, Row’s expected utilities are respectively Eu(D) = 2 and 
Eu(C) = 3. As a consequence, being Bayesian rational, Row should play C, i.e. should choose 
to play a dominated strategy. Is there any wrong for Row to reason this way? The definition 
of the correlated equilibrium solution concept excludes this kind of reasoning because, for any 
action ai, the computation of expected utilities for each alternative actions ai’ should be made 
using the conditional probabilities u(.|ai). This corresponds indeed to the standard definition 
of ratifiability in decision theory as put by Jeffrey [8]: “A ratifiable decision is a decision to 
perform an act of maximum estimated desirability relative to the probability matrix the agent 
thinks he would have if he finally decided to perform that act.” In the prisoner’s dilemma, it 
is easy to see that only D is ratifiable because considering to play C with the conditional 
probabilities given above, Row would do better by playing D; indeed, Eu(D|Columns plays C 
with probability ½) > Eu(C|Columns plays C with probability ½).  

As Levi recognizes, the addition of ratifiability as a criterion of rational choice leads de facto to 
exclude the possibility that the players in a game may rationally believe that some form of 
causal dependence holds between their choices. Indeed, as formally shown by Oliver Board [9], 
Aumann’s framework tacitly builds upon an assumption of causal independence but also of 
common belief in causal independence. For some philosophers and game theorists, this is 
unproblematic and indeed required since it is constitutive of game-theoretic reasoning (see for 
instance [10]). Quite the contrary, Levi regards this exclusion as illegitimate at least on a 
Bayesian ground. 
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Levi’s rejection of premises (i)-(iii) are more directly related to his “deliberation crowds out 
prediction thesis”. Actually, we may even focus on premises (i) and (iii) as premise (ii) depends 
on (i). Consider the assumption that the players have a probability measure over the joint-
action space first. Contrary to a standard Bayesian decision problem where the probability 
measure is defined over a set of states that is distinct from the set of acts, in a game-theoretic 
context the domain of the probability measures encompasses each player’s own strategy 
choice. In other words, this leads the game theorist to assumes that each player ascribes an 
unconditional probability to his own choice. I have already explained why Levi regards this 
assumption as unacceptable if one wants to account for the way decision makers reason and 
deliberate.7 The common prior assumption (ii) is of course even less commendable in this 
perspective, especially if we consider that such an assumption pushes us outside the realm of 
strict Bayesianism. Regarding assumption (iii), Levi’s complaint is similar: common 
knowledge of Bayesian rationality implies that each player knows that he is rational. However, 
if a player knows that he is rational before making his choice, then he already regards as feasible 
only admissible acts (recall Levi’s claims 1 and 2). Hence, no deliberation has to take place. 

Levi’s critique of premises (i)-(iii) seem to extend to the epistemic program as a whole. What 
is at stake here is the epistemological and methodological status of the theoretical models build 
by game theorists. The question is the following: what is the modeler trying to establish 
regarding the behavior of players in strategic interactions? There are two obvious possibilities. 
A first one is that, as an outside observer, the modeler is trying to make sense (i.e. to describe 
and to explain) of players’ choices after having observed them. Relatedly, still as an outside 
observer, he may try to predict players’ choices before they are made. A second possibility is 
to game-theoretic models as tools to account for the players’ reasoning process prospectively, 
i.e. how players’ deliberate to make choice. Levi’s “deliberation crowds out prediction” thesis 
could grant some relevance to the first possibility may not for the second. However, he 
contends that Aumann’s argument for correlated equilibrium cannot be only retrospective but 
must also be prospective.8 If Levi is right, the epistemic program as a whole is affected by this 
argument, though fortunately there is room for alternative approaches, as illustrated by 
Bonanno’s paper mentioned in the preceding post. 
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